Strategies to Help Reduce Hospital Readmissions for Cancer

November 7, 2019

As more healthcare organizations look to curb hospital readmission rates, they are taking a hard look at one of medicine’s most complex conditions-cancer.

As such, both payer and provider organizations are looking for creative, sustainable ways to reduce waste and improve the quality of care for patients, especially those who are living with chronic or complex medical conditions. With CMS already collecting data for its first oncology performance measure, OP-35: Admissions and Emergency Department Visits for Patients Receiving Outpatient Chemotherapy, which will affect payments come 2020, many healthcare organizations are taking a long, hard look at where they can prevent, or at least significantly reduce, cancer readmissions.

It’s not a surprise. As noted by the Agency for Healthcare Research and Quality (AHRQ), hospital readmissions, regardless of condition, are remarkably expensive, with collective costs hovering just over $41 billion a year for patients who return to the hospital within 30 days of discharge. But Alok Khorana, MD, a medical oncologist at the Cleveland Clinic, says readmissions are becoming more of a focal issue for cancer care, as more patients are treated in an outpatient setting.

“In the past, cancer patients were generally admitted while they were worked up, staying in the hospital for 10 to 14 days,” he explains. “Today, there is pressure to make hospital stays as brief as possible, which means that many patients are discharged without all of their issues being completely resolved. Since cancer is such a complex condition, with both acute and chronic elements, we often see that readmission rates in the cancer population are higher than those in the general medical population.”

But given cancer’s complexity, what can healthcare stakeholders across the industry do to better prevent cancer readmissions?

Considering care Transitions

Given how little time patients stay in the hospital today, the Cleveland Clinic embarked on a process improvement project to improve outpatient care transitions. Khorana says the project started as a way of looking at “common sense” steps to reduce readmissions. He said their first lesson learned what that a significant portion of cancer readmissions are simply inevitable given this disease’s level of complexity.

“This is important for regulators and for payer organizations to understand,” he says. “In many cases, readmission is the right thing to do for patients. It cannot be avoided no matter what the provider may do.”

Yet, to help reduce the number of readmissions in cases that were preventable, he and his colleagues focused on improving care transitions, providing patients with more support once they were discharged.

Related: How Current Accreditation Approaches Impact Reduction of Hospital Readmissions

“Cancer patients receive really intensive care while they are in the hospital, from a variety of different clinical staff,” he explains. “The key is to not take all of that away once they went home. We started a program where an oncology nurse checked in with patients within 48 hours of discharge, and then they had a follow-up appointment with the provider within five days of discharge, to help provide continuity of care and answer any questions. We discovered that there were a lot of areas where we could help prevent readmissions just by adding in those extra contacts.”

In fact, by putting this standardized discharge protocol in place, the Cleveland Clinic was able to reduce the readmission rate in medical oncology by approximately 4.5%. 

“It was a modest improvement-but a sustainable one,” he says. “In terms of dollars, we are talking about millions of dollars in savings over the long term. And the patients, of course, have the benefit of not ending up back in the hospital.”

Predicting patients at highest risk

But, given that some cancer readmissions are unavoidable, how might healthcare organizations better predict who is at the highest risk of a readmission?

Carl Schmidt, MD, a surgical oncologist formerly at Ohio State University College of Medicine who is now based at West Virginia University Cancer Institute, hoped to develop a model that could estimate the risk of readmission for individual patients. With such a model in place, oncologists could better determine where to best put care management resources after discharge.

“In our original analysis, we estimated that probably about 1 in 5 readmissions was preventable,” he says. “So, in that 20%, there may be things we can do to stop them from happening. Those patients may just need more interventions. But since some of those interventions are costly, you don’t want to give them to everyone. You want to figure out who really needs them.”

He and a team of colleagues developed a logistic regression model using high-risk factors including abnormal sodium levels, low white blood cell count, solid malignancy, and emergency department visits, among others. When they validated the model, it could reliably predict which patients would go on to be readmitted with about 70% accuracy. He believes future models could use artificial intelligence (AI) tools to improve that percentage.

“Our model was pretty simple, but it still allowed us to flag patients who might need some additional support,” he says. “But healthcare organizations, particularly academic centers with the resources, could come up with a better predictive model using neural networking or other AI methods that offer more precise predictions.”

Finding the right path forward

Justin Bekelman, MD, a radiation oncologist at the University of Pennsylvania’s Perelman School of Medicine who has studied how to be reduce unplanned acute care for patients with cancer, including hospital readmissions, says there is a huge opportunity for healthcare stakeholders to think creatively about how address cancer readmissions. He agrees with Schmidt that predictive analytics will likely play an integral role.

“Today, there are not truly validated predictive analytics that can identify patients who are at the highest risk of readmission,” he says. “But in addition, healthcare organizations can also use those kind of big data approaches to simple find ways to dramatically improve the care of patients with cancer-that will reduce readmissions, too.”

Bekelman, as well as Schmidt and Khorana, all argue that addressing this issue isn’t something that healthcare organizations can do alone. There is a role for payers, too-either by funding larger scale research efforts or by providing predictive models and tools for their provider partners to use to improve care for this patient population. Jessica Saba, PharmD, director of Value Based and Population Health at Highmark, Inc., a large Blue Cross Blue Shield plan serving Pennsylvania, West Virginia, and Delaware, says it’s certainly something that health plans like hers are actively working on.

“Cancer care, traditionally, represents quite a large bit of healthcare spend-and there are many direct and indirect ways to try to manage that,” she says. “And, certainly, analytics is an emerging area for Highmark and we are looking at ways that data can help. We are working quite hard to provide more tools and insights to our physician partners so they can more effectively manage these cases.”

For his part, Schmidt says he is buoyed by the amount of academic research being done on this issue. And he hopes that healthcare organizations, both of the provider and payer variety, are not only paying close attention to the studies-but looking for ways that they can get involved to help.

“This is about a lot more than just readmission numbers,” he says. “Trying to reduce them in payer contracts or with quality metrics that say something like, ‘Oh, you need to drop your readmission rate from 14% to 13.2%,’ isn’t going to work. Healthcare stakeholders need to collaborate and come up with better, smarter models so we can understand and undertake evidence-based measures that will provide the best quality care for our patients-and, with that, reduce readmissions along the way.”

Kayt Sukel is a science and health writer based outside Houston.

download issueDownload Issue : MHE November 2019