
[BLOG]: 741 drugs in antibiotics pipeline, few first-in-class
Antibiotic resistance has grown at an alarming rate over the last few decades. To prevent a post-antibiotic era in which common infections could become lethal, an estimated 20 novel families of antibiotics must be developed in the next 50 years. Political groups in both the U.S. and Europe are each working to promote new development, but there are concerns the results may not come in time.
NoonAntibiotic resistance has grown at an alarming rate over the past few decades. The situation is now described as “urgent” by the
To prevent the arrival of a postantibiotic era in which common infections can once again kill, it is estimated that 20 novel families of antibiotics must be developed within the next 50 years.1 Antibiotic development is difficult, however, with only 12 new drugs approved by
Related:
In response to growing concerns over the lack of new antibiotics, the United States Congress passed the 2011
Unfortunately, it appears that these incentives have done little to promote novel antibiotic development. GBI Research’s report product
Improvements to research methodologies have been suggested to increase the success of identifying first-in-class compounds. One recommendation is to revise the criteria used to isolate lead compounds (Lipinski’s rule of five), which typically apply to drug effects in mammalian cells, the rules of which bacteria generally do not observe.5 Alternatively, the desire to find a broad-spectrum antibiotic, which typically acts against conserved genes, may ultimately be hindering successful antibiotic development. Although a less attractive option commercially, identifying a chemical inhibitor of a molecular target essential for cell viability and/or disease progression in a single bacterial species may represent a viable prospect if that infection is particularly common or if it has developed a high degree of resistance to available therapies.
Even if these changes are successfully implemented and significant numbers of lead compounds are brought to human trials, the desire to restrict the spread of resistant disease means that it is unlikely that any first-in-class antibiotic would be widely used. Prescription would instead be restricted to severe cases of multidrug-resistant disease. Furthermore, with the United Kingdom’s
Related:
As a result of the lack of innovation, the desire to maintain bacterial susceptibility to new antibiotics, and the premium cost of any newly approved therapies, the dynamics of antibiotic use are not expected to alter significantly over the next few years. The use of generics will continue, with the generic and me-too drugs that dominate the pipeline simply adding to the number available. As antibiotic resistance increases over the coming few years, it can be speculated that an increasing number of more expensive, second-line antibiotics will have to be utilized, such as the use of kanamycin and streptomycin in multidrug-resistant tuberculosis. Ultimately, the limited number of newly approved novel antibiotics will have a minimal impact on the treatment algorithms for bacterial infections.
Novel antibiotics will prove essential as resistance increases in the long term; however, such little success in this field coupled with the fact that antibiotic development remains an unprofitable venture for pharma companies means that sufficient novel antibiotic development may be too little too late. The already implemented regulatory incentives for antibiotic development may be partially successful at stimulating some interest in the field, but ultimately, new commercial models to make antibiotic development profitable are desperately needed. One approach, as proposed by WHO, is to uncouple a drug’s sales cost from its developmental cost. Others have proposed increasing public funding or introducing purchaser contracts to ensure the sale of a novel antibiotic for an appropriate timeframe. The successful implementation of these recommendations remains to be seen.
References
Coates A, Halls G, Hu Y. Novel classes of antibiotics or more of the same? Br J Pharmacol. 2011;163(1):184–194.
Livermore DM; British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother. 2011;66(9):1941–1944.
Payne D, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29–40.
Forsyth C. Repairing the antibiotic pipeline: can the gain act do it? Wash JL Tech Arts. 2013;9(1):1–18.
Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12(5):371–387.
Ms Noon is a senior analyst for
Read next:
Newsletter
Get the latest industry news, event updates, and more from Managed healthcare Executive.

















































